A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microglia as a Surrogate Biosensor to Determine Nanoparticle Neurotoxicity. | LitMetric

Microglia as a Surrogate Biosensor to Determine Nanoparticle Neurotoxicity.

J Vis Exp

Minneapolis Veterans Affairs Health Care System; Department of Food Science and Nutrition, University of Minnesota; Minnesota Obesity Center, University of Minnesota;

Published: October 2016

Nanoparticles found in air pollutants can alter neurotransmitter profiles, increase neuroinflammation, and alter brain function. Therefore, the assay described here will aid in elucidating the role of microglia in neuroinflammation and neurodegenerative diseases. The use of microglia, resident immune cells of the brain, as a surrogate biosensor provides novel insight into how inflammatory responses mediate neuronal insults. Here, we utilize an immortalized murine microglial cell line, designated BV2, and describe a method for nanoparticle exposure using silver nanoparticles (AgNPs) as a standard. We describe how to expose microglia to nanoparticles, how to remove nanoparticles from supernatant, and how to use supernatant from activated microglia to determine toxicity, using hypothalamic cell survival as a measure. Following AgNP exposure, BV2 microglial activation was validated using a tumor necrosis factor alpha (TNF-α) enzyme linked immunosorbent assay (ELISA). The supernatant was filtered to remove the AgNP and to allow cytokines and other secreted factors to remain in the conditioned media. Hypothalamic cells were then exposed to supernatant from AgNP activated microglia and survival of neurons was determined using a resazurin-based fluorescent assay. This technique is useful for utilizing microglia as a surrogate biomarker of neuroinflammation and determining the effect of neuroinflammation on other cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5092232PMC
http://dx.doi.org/10.3791/54662DOI Listing

Publication Analysis

Top Keywords

microglia surrogate
8
surrogate biosensor
8
activated microglia
8
microglia
7
biosensor determine
4
determine nanoparticle
4
nanoparticle neurotoxicity
4
nanoparticles
4
neurotoxicity nanoparticles
4
nanoparticles air
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!