Lignocellulosic biomass is an abundant, renewable feedstock useful for production of fuel-grade ethanol and other bio-products. Pretreatment and enzyme saccharification processes release sugars that can be fermented by yeast. Traditional industrial yeasts do not ferment xylose (comprising up to 40% of plant sugars) and are not able to function in concentrated hydrolyzates. Concentrated hydrolyzates are needed to support economical ethanol recovery, but they are laden with toxic byproducts generated during pretreatment. While detoxification methods can render hydrolyzates fermentable, they are costly and generate waste disposal liabilities. Here, adaptive evolution and isolation techniques are described and demonstrated to yield derivatives of the native Scheffersomyces stipitis strain NRRL Y-7124 that are able to efficiently convert hydrolyzates to economically recoverable ethanol despite adverse culture conditions. Improved individuals are enriched in an evolving population using multiple selection pressures reliant on natural genetic diversity of the S. stipitis population and mutations induced by exposures to two diverse hydrolyzates, ethanol or UV radiation. Final evolution cultures are dilution plated to harvest predominant isolates, while intermediate populations, frozen in glycerol at various stages of evolution, are enriched on selective media using appropriate stress gradients to recover most promising isolates through dilution plating. Isolates are screened on various hydrolyzate types and ranked using a novel procedure involving dimensionless relative performance index (RPI) transformations of the xylose uptake rate and ethanol yield data. Using the RPI statistical parameter, an overall relative performance average is calculated to rank isolates based on multiple factors, including culture conditions (varying in nutrients and inhibitors) and kinetic characteristics. Through application of these techniques, derivatives of the parent strain had the following improved features in enzyme saccharified hydrolyzates at pH 5-6: reduced initial lag phase preceding growth, reduced diauxic lag during glucose-xylose transition, significantly enhanced fermentation rates, improved ethanol tolerance and accumulation to 40 g/L.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5092230 | PMC |
http://dx.doi.org/10.3791/54227 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Resorcinol is a widespread substance used in a large variety of manufacturing industries, including cosmetics, with endocrine-disrupting activity on the thyroid function. The aim of the present study was to develop and validate a sensitive, selective and robust method to quantify resorcinol in urine and thereby assess hairdressers' occupational exposure. As resorcinol is mainly excreted in urine as glucuronide or sulfate forms, the first step consisted in hydrolyzing urine samples with a β-glucuronidase-arylsulfatase enzyme for 16 h.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
DVGW-Research Center at the Engler-Bunte-Institute, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.
View Article and Find Full Text PDFMetab Eng
January 2025
Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, CN; University of Chinese Academy of Sciences,Beijing, CN. Electronic address:
10-hydroxy-2-decenoic acid (10-HDA), a unique unsaturated fatty acid present in royal jelly, has attracted considerable interest due to its potential medical applications. However, its low concentration in royal jelly and complex conformational structure present challenges for large-scale production. In this study, we designed and constructed a de novo biosynthetic pathway for 10-HDA in Escherichia coli.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2025
Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.
This study evaluates the efficacy of garbage enzyme (GE) in bioremediation to reduce pollutants in sewage drains that discharge into the natural streams and rivers. Garbage enzyme is prepared with help of brown sugar, fruit, vegetable wastes, and water in the proportion 1:3:10 (by weight), which is then applied to the samples collected from various drainage sites in Jaunpur district, Uttar Pradesh, India. Different concentrations of GE (ranging from 0% to 20%) are mixed with sewage to assess pollution reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!