AI Article Synopsis

  • TLR3 activation in cancer has a complex role, causing both cell death (apoptosis) and promoting cancer cell growth and survival through metabolic changes.
  • After TLR3 stimulation in pharyngeal cancer cells, key proteins were found to increase, leading to enhanced glycolysis, cell movement, and a rise in harmful reactive oxidative species (ROS).
  • Although TLR3 agonists show potential as cancer treatments, their ability to support cancer survival raises concerns, suggesting the need for further research and careful application in clinical settings.

Article Abstract

Toll-like receptor 3 (TLR3) has a dual role in cancer; its activation can trigger apoptosis as well as stimulate cancer cell survival, proliferation, and progression. We have shown here that TLR3 activation can induce metabolic reprogramming in a pharyngeal cancer cell line, leading to increased aerobic glycolysis, cell migration, elevated levels of reactive oxidative species (ROS), and decreased anti-oxidative response. Key proteins in these signaling pathways are heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), pyruvate kinase M2 (PKM2), and CD44 variants, which were over-expressed after TLR3 stimulation. TLR3 activation also induced upregulation of different genes involved in cancer progression (VEGF, MMP9, uPAR) and enzymes involved in glycolytic pathway. Most of the observed effects were Myc-dependent; however, some of them were also connected with MAPK and HIF signaling pathways. Since TLR3 agonists are being investigated as potential novel cancer therapy adjuvants and apoptosis inducers, alone or in combination with other therapeutic options, data presented here suggest extreme caution before their introduction into clinical practice. The fact that TLR3 ligands [poly(I:C) and poly(A:U)] can also aid cancer survival and progression, through induction of metabolic reprogramming, emphasizes the need to investigate this particular topic. Our data suggest that the combination of TLR3 ligands with Myc or MAPK inhibitors may be a way to neutralize their undesirable effects while enhancing their anti-tumor effect. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.22584DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
12
cancer cell
12
toll-like receptor
8
reprogramming pharyngeal
8
pharyngeal cancer
8
myc mapk
8
mapk hif
8
tlr3 activation
8
signaling pathways
8
tlr3 ligands
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!