An optical-fiber based evanescent ammonia vapor sensor was constructed with surface-passivated growth of zinc oxide (ZnO) nanostructures, which was achieved through a three-step wet chemical process. Initially, the ZnO nanostructures were synthesized using a wet-chemical method and subsequently surface-passivated with chalcogenide material compounds namely cadmium sulphide (CdS) and cadmium selenide (CdSe) nanoparticles individually using a citric acid assisted chemical synthesis technique. Finally, surface-passivated ZnO was deposited on the cladding modified optical-fiber using a dip coating process. X-ray diffraction (XRD), tunneling electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) analyses confirmed the growth of CdS and CdSe nanoparticles on the surface of ZnO nanoparticles. The atomic composition and the full width at half maximum (FWHM) of the oxygen O 1s oxidation state represented in the X-ray photoelectron spectra were lower and narrower for ZC2 nanostructures implying that the available surface oxygen had reacted well and promoted the uniform shell-like growth of CdSe nanoparticles on the ZnO. The significance of the surface-passivated ZnO was realized from UV-Vis diffuse reflectance spectroscopy (DRS) and a photo-luminescence (PL) study and was implemented in a room temperature optical-fiber based evanescent ammonia vapor sensor. The nano-sized CdS particles decorated on the surface of ZnO demonstrate a high vapor sensing behavior. The sensing enhancement was nearly 3 times larger than the core-shell like ZnO/CdSe (ZC2) nanostructures and was attributed to the effective interaction of the incident light and the sensing media, the change in the refractive index of the modified cladding regime, the rate of vapor adsorption and the effective charge-carrier transport between the so-formed hetero-junction interfaces. The ZC2 shows insignificant ammonia vapor adsorption and sensing due to decreased free carrier density produced within the ZnO host lattice and an increased potential barrier width between the ZnO/CdSe hetero-structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp06251bDOI Listing

Publication Analysis

Top Keywords

ammonia vapor
16
cdse nanoparticles
12
zno/cdse hetero-structures
8
vapor sensing
8
optical-fiber based
8
based evanescent
8
evanescent ammonia
8
vapor sensor
8
zno
8
zno nanostructures
8

Similar Publications

Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.

View Article and Find Full Text PDF

Nondestructively-measured leaf ammonia emission rates can partly reflect maize growth status.

Plant Physiol Biochem

January 2025

School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Engineering Research Center of Environmentally-friendly and Efficient Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

A deep understanding of ammonia (NH) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH emissions based on portable NH sensors.

View Article and Find Full Text PDF

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!