The role of the surface groups T (T = OH, O or F) in the chemical bonding in two-dimensional TiCT MXene is directly evidenced combining electron energy-loss spectroscopy in a transmission electron microscope and simulations based on density functional theory. By focusing on the 1s core electrons excitations of the C and (F, O) atoms, the site projected electronic structure is resolved. The Electron Energy-Loss Near Edge Structures (ELNES) at the C-K edge are shown to be sensitive to the chemical nature and the location of the T-groups on the MXene's surface and thereby allow for the characterization of the MXene's functionalization on the nanometre scale. In addition, the ELNES at the C and F-K edges are shown to be determined by the hybridizations of these atoms with the Ti d bands: these edges are thus relevant probes of the Ti d density of states close to the Fermi level which is of particular interest since it drives most of the TiCT electronic properties. Finally, the crucial role in the MXene's functionalization of the etchant used for its synthesis is evidenced by locally determining the [O]/[F] concentration ratio using the corresponding K edges. This ratio is shown to be drastically increased from 1.4 to 3.5 when using HF or LiF/HCl respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp05985fDOI Listing

Publication Analysis

Top Keywords

electronic structure
8
role surface
8
electron energy-loss
8
mxene's functionalization
8
site-projected electronic
4
structure two-dimensional
4
two-dimensional tic
4
tic mxene
4
mxene role
4
surface functionalization
4

Similar Publications

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.

View Article and Find Full Text PDF

Aiming at the effects caused by stress and deformation on Micro-Electro-Mechanical System (MEMS) sensors, the stress distribution in the radiation area of the MEMS infrared light source is investigated, and by simulating and optimizing the thickness of the composite support film of the chip structure in COMSOL, a film layer thickness matching with lower stress and deformation for the MEMS infrared light source is derived. The utilization of the particle swarm algorithm and backpropagation neural network model allowed for the optimization of simulation data, enabling regression prediction over a broader range of thicknesses and providing a more precise depiction of the stress distribution trend. In addition, the specifications of the MEMS device help us to analyze the design of the support film thickness in the processing of the residual stress within the controllable range.

View Article and Find Full Text PDF

Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials.

J Phys Chem A

January 2025

Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.

Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.

View Article and Find Full Text PDF

Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion.

Chem Commun (Camb)

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!