Subdiffusion in Membrane Permeation of Small Molecules.

Sci Rep

Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, 1800 Denison Ave, Kansas State University, Manhattan, Kansas 66506, USA.

Published: November 2016

Within the solubility-diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t, in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090971PMC
http://dx.doi.org/10.1038/srep35913DOI Listing

Publication Analysis

Top Keywords

membrane permeation
8
permeation small
8
small molecules
8
lipid bilayer
8
subdiffusion membrane
4
molecules solubility-diffusion
4
solubility-diffusion model
4
model passive
4
membrane
4
passive membrane
4

Similar Publications

Preparation of a 6FDA-DAM/ODA Mixed Matrix Membrane Doped with MOFs and Its Application in Gas Separation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

Mixed matrix membranes (MMMs) can significantly improve gas separation performance, but the type and state of the filler in the membrane matrix are key indicators for the development of MMMs. Therefore, in this work, 6FDA-DAM/ODA (1:1), metal-organic frameworks (MOFs) with different particle sizes (UiO-66 and UiO-66-NH) were synthesized, and then MOFs were doped into 6FDA-DAM/ODA to prepare MMMs. The effects of the dopant materials and their particle sizes on the gas separation performance of the membranes were investigated by testing the permeability of the MMMs to H, CO, CH, and N.

View Article and Find Full Text PDF

Ion exchange membranes (IEMs) are permselective membranes that, in principle, only allow the flow of ions with a specific charge sign, opposite to that of the fixed membrane ionic groups (counter-ions). This charge-based selectivity, like the size-based selectivity of classic semipermeable membranes, leads to an uneven distribution of permeating ions on the two sides of the membrane, which allows for ion separation or recovery in various processes in industry or environmental protection. Here, we apply the principles of mass balance, charge neutrality, and equality of electrochemical potentials in the state of thermodynamic equilibrium to provide a simple method for estimating the Gibbs-Donnan factors and the equilibrium concentrations of permeating ions in two compartments separated by an ideal IEM, i.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Membrane-based gas separation offers a promising alternative route to energy-intensive industrial gas separation processes. Conventional microporous membranes often exhibit low gas selectivities for gases with similar kinetic diameters, primarily due to large pore sizes and reliance on Knudsen selectivity. In this study, we present self-assembled gold nanoparticle (Au NP) membranes that enable molecular gas separation within the kinetic diameter range of small gases such as H, CO, and O.

View Article and Find Full Text PDF

Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree.

J Phys Chem B

January 2025

Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Polyamide (PA) membranes are widely utilized in desalination and water treatment applications, yet the mechanisms underlying water transport within these amorphous polymer materials remain insufficiently understood. To gain more insight into these problems on a microscopic scale, we employ molecular dynamics (MD) simulations to analyze the relationship between the structural properties and the water permeation behavior of PA membranes. Two distinct atomistic models of PA membranes are developed by controlling their degrees of cross-linking (DC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!