Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of 'Continental Europe'. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50-100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40-50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347525PMC
http://dx.doi.org/10.1007/s13280-016-0840-3DOI Listing

Publication Analysis

Top Keywords

land change
20
climate change
20
change
12
dry grasslands
12
species
10
climate
8
land climate
8
dragonfly species
8
environmental pressures
8
spatial scales
8

Similar Publications

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Pathways to achieving net zero carbon emissions commonly involve deploying reforestation, afforestation, and bioenergy crops across millions of hectares of land. It is often assumed that by helping to mitigate climate change, these strategies indirectly benefit biodiversity. Here, we modeled the climate and habitat requirements of 14,234 vertebrate species and show that the impact of these strategies on species' habitat area tends not to arise through climate mitigation, but rather through habitat conversion.

View Article and Find Full Text PDF

This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.

View Article and Find Full Text PDF

The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.

View Article and Find Full Text PDF

Background: Exploring the coordinated relationship between urban-rural integration and air quality has significant implications for promoting urban-rural development, preventing air pollution and ensuring residents' health. This study takes Yangtze River middle reaches city cluster as a case study, calculates the levels of urban-rural integration and air quality development, analyzes their coupled coordination relationship and driving factors, and explores the path of coordinated development.

Methods: This study constructs a coupling coordination degree model to analyze the relationship between the urban-rural integration development level and air quality development level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!