Proper neuronal migration and laminar formation during corticogenesis is essential for normal brain function. Disruption of these developmental processes is thought to be involved in the pathogenesis of some neuropsychiatric conditions. Especially, Reelin, a glycoprotein mainly secreted by the Cajal-Retzius cells and a subpopulation of GABAergic interneurons, has been shown to play a critical role, both during embryonic and postnatal periods. Indeed, animal studies have clearly revealed that Reelin is an essential molecule for proper migration of cortical neurons and finally regulates the cell positioning in the cortex during embryonic and early postnatal stages; by contrast, Reelin signaling is closely involved in synaptic function in adulthood. In humans, genetic studies have shown that the gene () is associated with a number of psychiatric diseases, including Schizophrenia (SZ), bipolar disorder (BP) and autistic spectrum disorder. Indeed, haploinsufficiency has been shown to cause cognitive impairment in rodents, suggesting the expression level of the Reelin protein is closely related to the higher brain functions. However, the molecular abnormalities in the Reelin pathway involved in the pathogenesis of psychiatric disorders are not yet fully understood. In this article, we review the current progress in the understanding of the Reelin functions that could be related to the pathogenesis of psychiatric disorders. Furthermore, we discuss the basis for selecting Reelin and molecules in its downstream signaling pathway as potential therapeutic targets for psychiatric illnesses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067484PMC
http://dx.doi.org/10.3389/fncel.2016.00229DOI Listing

Publication Analysis

Top Keywords

reelin
8
involved pathogenesis
8
pathogenesis psychiatric
8
psychiatric disorders
8
reelin neuropsychiatric
4
neuropsychiatric disorders
4
disorders proper
4
proper neuronal
4
neuronal migration
4
migration laminar
4

Similar Publications

Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.

View Article and Find Full Text PDF

Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. Electronic address:

Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX1 mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation.

View Article and Find Full Text PDF

Numerous studies of the human brain supported by experimental results from rodent and cell models point to a central role for intracellular amyloid beta (Aβ) in the onset of Alzheimer's disease (AD). In a rat model used to study AD, it was recently shown that in layer II neurons of the anteriolateral entorhinal cortex expressing high levels of the glycoprotein reelin (Re+alECLII neurons), reelin and Aβ engage in a direct protein-protein interaction. If reelin functions as a sink for intracellular Aβ and if the binding to reelin makes Aβ physiologically inert, it implies that reelin can prevent the neuron from being exposed to the harmful effects typically associated with increased levels of oligomeric Aβ.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the serum levels of various proteins related to myelin and inflammation in children with ADHD compared to healthy controls, focusing on their connection to clinical severity and irritability.
  • Researchers included 141 ADHD children aged 8-14 and 135 typical controls, measuring protein levels using specific assays and assessing behaviors with standardized scales.
  • Results indicated significantly higher levels of certain proteins (MAG, CDNF, hs-CRP, reelin, cerebellin) in ADHD children, alongside increased irritability, and noted significant correlations between some protein levels and clinical symptoms of ADHD and related disorders.
View Article and Find Full Text PDF

Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients.

Brain Behav Immun

February 2025

Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada. Electronic address:

A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!