We previously identified 3-chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide (5, TP0439150) as a potent and orally available glycine transporter 1 (GlyT1) inhibitor. In this article, we describe our identification of 1-methyl-N-(propan-2-yl)-N-({2-[4-(trifluoromethoxy)phenyl]pyridin-4-yl}methyl)-1H-imidazole-4-carboxamide (7n) as a structurally diverse back-up compound of 5, using central nervous system multiparameter optimization (CNS MPO) as a drug-likeness guideline. Compound 7n showed a higher CNS MPO score and different physicochemical properties as compared to 5. Compound 7n exhibited potent GlyT1 inhibitory activity, a favorable pharmacokinetics profile, and elicited an increase in the cerebrospinal fluid (CSF) concentration of glycine in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c16-00610DOI Listing

Publication Analysis

Top Keywords

potent orally
8
orally glycine
8
glycine transporter
8
cns mpo
8
identification potent
4
transporter inhibitor
4
inhibitor identified
4
identified tp0439150
4
tp0439150 potent
4
transporter glyt1
4

Similar Publications

The two most clinically important members of the flavivirus genus, Zika virus (ZIKV) and dengue virus (DENV) pose a significant public health challenge. They cause a range of diseases in humans, from hemorrhagic to neurological manifestations, leading to economic and social burden worldwide. Nevertheless, there are no approved antiviral drugs to treat these infections.

View Article and Find Full Text PDF

ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation in rats.

Turk J Med Sci

December 2024

Department of Pharmacology, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China.

Background/aim: Doxorubicin (Dox) is a potent anticancer medication. However, due to nephrotoxicity, its clinical application is restricted. (AM) is a plant used in traditional medicine to treat several conditions, including kidney disorders.

View Article and Find Full Text PDF

Therapeutic potential of 2S-hesperidin against the hepatotoxic effects of Dichlorvos in rats.

Food Chem Toxicol

December 2024

Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

Dichlorvos (DDVP) is an organophosphate insecticide that enhances food production and repels disease vectors. However, it provokes cytotoxicity. 2S-hesperidin (2S-HES) is a potent antioxidant, anti-inflammatory, and anti-lipidemic flavanone.

View Article and Find Full Text PDF

Design, synthesis, and pharmacological evaluation of triazine-based PI3K/mTOR inhibitors for the potential treatment of non-small cell lung cancer.

Eur J Med Chem

December 2024

School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China; School of Pharmacy, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Dysregulated activation of the PI3K/AKT/mTOR pathway is crucial in the development of cancer, and disrupting it could potentially lead to cancer suppression, making it a viable strategy for cancer treatment. Here, as a consecutive work of our team, we described the identification and optimization of PI3K/mTOR inhibitors based on triazine scaffold, which exhibited potent PI3K/mTOR inhibitor activity. The systematically structure-activity relationship (SAR) results demonstrated that compound 5nh displayed high efficacy against PI3Kα and mTOR, with the IC values of 0.

View Article and Find Full Text PDF

Acetaminophen (APAP) is a well-known drug that, in high doses, induces hepatotoxicity and nephrotoxicity. This study has investigated the preventive effect of the extract and fractions of on APAP-induced liver and kidney damage. In this experiment, after analysis of the extract using FTIR, toxicity was induced by APAP on the 7th day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!