Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159490 | PMC |
http://dx.doi.org/10.1074/jbc.M116.760017 | DOI Listing |
J Neurosci
January 2025
Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congential seizures.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.
Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!