Background: Epicardial adipose tissue volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate epicardial adipose tissue's formation and expansion are unclear.
Methods: We used a novel modified mRNA-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart.
Results: Using 2 independent lineage-tracing strategies in murine models, we show that cells originating from the Wt1 mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue after myocardial infarction. This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation in the context of exogenous, IGF1-modified mRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1 lineage cell differentiation into adipocytes after myocardial infarction.
Conclusions: Our results establish IGF1R signaling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury by redirecting the fate of Wt1 lineage cells. Our study also demonstrates the power of modified mRNA -based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5195872 | PMC |
http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022064 | DOI Listing |
Sci Rep
January 2025
Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
To investigate the correlation between the density and volume of epicardial adipose tissue(EAT)and acute coronary syndrome (ACS). This study included 355 subjects (mean age: 60.65 ± 9.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99#, Huaihai West Road, Xuzhou, 221002, China.
Background: Previous studies have shown that epicardial edipose tissue(EAT) appears to be associated with myocardial inflammation and fibrosis, but this is not clear in patients with new-onset atrial arrhythmias after STEMI. The present study focused on using CMR to assess the association of epicardial fat with myocardial inflammation and fibrosis and its predictive value in patients with new-onset atrial arrhythmias after STEMI.
Methods: This was a single-centre, retrospective study.
J Biophotonics
January 2025
Department of Electrical Engineering, Columbia University, New York, New York, USA.
Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st, Bronx, NY, USA.
Computed tomography (CT)-derived Epicardial Adipose Tissue (EAT) is linked to cardiovascular disease outcomes. However, its role in patients undergoing Transcatheter Aortic Valve Replacement (TAVR) and the interplay with aortic stenosis (AS) cardiac damage (CD) remains unexplored. We aim to investigate the relationship between EAT characteristics, AS CD, and all-cause mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!