An injection barrel was designed and fabricated for a small size 0.8 mm cryogenic pellet with a low speed of 200-300 m/s in medium-sized plasma fusion devices. Pellet injection with pneumatic acceleration was examined using a conventional in situ technique. A tapered structure was applied in the downstream side of the injection barrel to satisfy the requirement of pellet speed reduction by expansion of the propellant gas. Shadowgraph and light gate measurements show that the intact pellets have speeds of 260 ± 30 m/s and a typical size of 1.1-1.2 mm. The pellet ablation code based on a neutral gas shielding model shows that the penetration depth of the measured pellet parameters does not cross the plasma center, even in medium-sized plasma devices such as the Heliotron J helical device. The injection barrel with a tapered structure developed in this study is feasible for low speed pellet injection.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4964476DOI Listing

Publication Analysis

Top Keywords

injection barrel
16
tapered structure
12
low speed
12
medium-sized plasma
12
barrel tapered
8
small size
8
size cryogenic
8
plasma fusion
8
fusion devices
8
pellet injection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!