A two-dimensional angular-resolved proton spectrometer.

Rev Sci Instrum

Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: October 2016

We present a novel design of two-dimensional (2D) angular-resolved spectrometer for full beam characterization of ultrashort intense laser driven proton sources. A rotated 2D pinhole array was employed, as selective entrance before a pair of parallel permanent magnets, to sample the full proton beam into discrete beamlets. The proton beamlets are subsequently dispersed without overlapping onto a planar detector. Representative experimental result of protons generated from femtosecond intense laser interaction with thin foil target is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4963706DOI Listing

Publication Analysis

Top Keywords

two-dimensional angular-resolved
8
intense laser
8
proton
4
angular-resolved proton
4
proton spectrometer
4
spectrometer novel
4
novel design
4
design two-dimensional
4
angular-resolved spectrometer
4
spectrometer full
4

Similar Publications

Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI and CrI.

Nano Lett

September 2022

Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, S.S.14, Km 163.5, I-34149 Trieste, Italy.

Article Synopsis
  • Two-dimensional van der Waals magnetic semiconductors, like transition-metal iodides CrI and VI, have unique properties that make them promising for new optical, electronic, and magnetic applications.
  • The study combines X-ray electron spectroscopies and theoretical computations to fully characterize the electronic ground states of CrI and VI, highlighting a wide bandgap in CrI and a Mott insulating phase in VI.
  • Findings suggest that the electronic properties are significantly affected by dimensionality, particularly through the discovery of a surface-only V oxidation state in VI, which impacts band engineering and the functionalities of these materials.
View Article and Find Full Text PDF

Probing mid-infrared surface wave radiation remains a big challenge for a long time. The lack of convenient and quick mid-infrared surface wave radiation probing methods limits the development of the integrated mid-infrared materials and devices. In this work, we propose a scheme to construct and probe the mid-infrared surface wave radiation of interface state in the waveguide through thermal emission.

View Article and Find Full Text PDF

Tailoring Dispersion of Room-Temperature Exciton-Polaritons with Perovskite-Based Subwavelength Metasurfaces.

Nano Lett

March 2020

Université de Lyon, Institut des Nanotechnologies de Lyon, INL-UMR5270, CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, F-69134 Ecully, France.

Exciton-polaritons represent a promising platform for studying quantum fluids of light and realizing prospective all-optical devices. Here we report on the experimental demonstration of exciton-polaritons at room temperature in resonant metasurfaces made from a sub-wavelength two-dimensional lattice of perovskite pillars. The strong coupling regime is revealed by both angular-resolved reflectivity and photoluminescence measurements, showing anticrossing between photonic modes and the exciton resonance with a Rabi splitting in the 200 meV range.

View Article and Find Full Text PDF

Two-dimensional (2D) materials with strong in-plane anisotropy are of interest for enabling orientation-dependent, frequency-tunable, optomechanical devices. However, black phosphorus (bP), the 2D material with the largest anisotropy to date, is unstable as it degrades in air. In this work we show that AsS is an interesting alternative, with a similar anisotropy to bP, while at the same time having a much higher chemical stability.

View Article and Find Full Text PDF

Ultra-precise diamond turning is the method of choice for manufacturing freeform optics. Analyzing surface errors in different spatial frequency ranges has mainly been performed in a one-dimensional representation of the power spectral density function. However, the advanced machine dynamics at the fabrication of freeform mirrors result in highly anisotropic surfaces with regular ripples in different orientations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!