The detailed and precise understanding of water-solid interaction largely relies on the development of atomic-scale experimental techniques, among which scanning tunneling microscopy (STM) has proven to be a noteworthy example. In this perspective, we review the recent advances of STM techniques in imaging, spectroscopy, and manipulation of water molecules. We discuss how those newly developed techniques are applied to probe the structure and dynamics of water at solid surfaces with single-molecule and even submolecular resolution, paying particular attention to the ability of accessing the degree of freedom of hydrogen. In the end, we present an outlook on the directions of future STM studies of water-solid interfaces as well as the challenges faced by this field. Some new scanning probe techniques beyond STM are also envisaged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4964668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!