Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089723 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165666 | PLOS |
PLoS One
June 2017
Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively.
View Article and Find Full Text PDFJ Biol Chem
September 2016
From the CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, F-38054 Grenoble, France, the Université Grenoble Alpes, F-38054 Grenoble, France, the CEA, DSV, BIG, F-38054 Grenoble, France, the INRA, LPCV, UMR 1417, F-38054 Grenoble, France, and
Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes.
View Article and Find Full Text PDFPlastocyanin is a copper (Cu)-requiring protein that functions in photosynthetic electron transport in the thylakoid lumen of plants. To allow plastocyanin maturation, Cu must first be transported into the chloroplast stroma by means of the PAA1/HMA6 transporter and then into the thylakoid lumen by the PAA2/HMA8 transporter. Recent evidence indicated that the chloroplast regulates Cu transport into the thylakoids via Clp protease-mediated turnover of PAA2/HMA8.
View Article and Find Full Text PDFBiosci Rep
April 2015
CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France Univ. Grenoble Alpes, F-38054 Grenoble, France CEA, DSV, iRTSV, F-38054 Grenoble, France INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France.
Copper (Cu) plays a key role in the photosynthetic process as cofactor of the plastocyanin (PC), an essential component of the chloroplast photosynthetic electron transfer chain. Encoded by the nuclear genome, PC is translocated in its apo-form into the chloroplast and the lumen of thylakoids where it is processed to its mature form and acquires Cu. In Arabidopsis, Cu delivery into the thylakoids involves two transporters of the PIB-1 ATPases family, heavy metal associated protein 6 (HMA6) located at the chloroplast envelope and HMA8 at the thylakoid membrane.
View Article and Find Full Text PDFJ Biol Chem
May 2012
Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878, USA.
PAA2/HMA8 (P-type ATPase of Arabidopsis/Heavy-metal-associated 8) is a thylakoid located copper (Cu)-transporter in Arabidopsis thaliana. In tandem with PAA1/HMA6, which is located in the inner chloroplast envelope, it supplies Cu to plastocyanin (PC), an essential cuproenzyme of the photosynthetic machinery. We investigated whether the chloroplast Cu transporters are affected by Cu addition to the growth media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!