Usher syndrome (USH) is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G) was reported in 2012, leading to the insertion of a pseudoexon (PE40) into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs) to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/mtna.2016.89 | DOI Listing |
Sleep Adv
December 2024
EPISTEME Research and Strategy, Brooklyn, NY, USA.
A central tenet of Freudian dream theory holds that there is thematic coherence within all dreams, even those containing scene and plot discontinuities. While other models support varying degrees of dream coherence, none address the question of how, or even whether, coherence can be identified in dreams with such discontinuities. Here, we objectively test the ability of judges to evaluate the coherence of individual dream narratives.
View Article and Find Full Text PDFStem Cell Res
February 2025
Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia. Electronic address:
A rare neurodevelopmental disorder has been linked to a well-conserved splice site variant in the TRAPPC4 gene (c.454 + 3A > G), which causes mis-splicing of TRAPPC4 transcripts and reduced levels of TRAPPC4 protein. Patients present with severe progressive neurological symptoms including seizures, microcephaly, intellectual disability and facial dysmorphism.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Computer Science, City University of Hong Kong, Hong Kong, China.
Motivation: Proteoforms are the different forms of a proteins generated from the genome with various sequence variations, splice isoforms, and post-translational modifications. Proteoforms regulate protein structures and functions. A single protein can have multiple proteoforms due to different modification sites.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain.
(1) Background: Most rare disease patients endure long delays in obtaining a correct diagnosis, the so-called "diagnostic odyssey", due to a combination of the rarity of their disorder and the lack of awareness of rare diseases among both primary care professionals and specialists. Next-generation sequencing (NGS) techniques that target genes underlying diverse phenotypic traits or groups of diseases are helping reduce these delays; (2) Methods: We used a combination of biochemical (thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry), NGS (resequencing gene panels) and splicing assays to achieve a complete diagnosis of three patients with suspected metachromatic leukodystrophy, a neurologic lysosomal disorder; (3) Results: Affected individuals in each family were homozygotes for harmful variants in the gene, one of them novel (c.854+1dup, in family 1) and the other already described (c.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland.
Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Whole exome (WES), whole gene, and whole genome sequencing (WGS) were performed for a patient with STGD1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!