Background: Deficits in mitochondrial function and oxidative stress play pivotal roles in Down syndrome (DS) and Alzheimer's disease (AD) and these alterations in mitochondria occur systemically in both conditions.
Objective: We hypothesized that peripheral cells of elder subjects with DS exhibit disease-specific and dementia-specific metabolic features. To test this, we performed a comprehensive analysis of energy metabolism in lymphoblastic-cell-lines (LCLs) derived from subjects belonging to four groups: DS-with-dementia (DSAD), DS-without-dementia (DS), sporadic AD, and age-matched controls.
Methods: LCLs were studied under regular or minimal feeding regimes with galactose or glucose as primary carbohydrate sources. We assessed metabolism under glycolysis or oxidative phosphorylation by quantifying cell viability, oxidative stress, ATP levels, mitochondrial membrane potential (MMP), mitochondrial calcium uptake, and autophagy.
Results: DS and DSAD LCLs showed slower growth rates under minimal feeding. DS LCLs mainly dependent on mitochondrial respiration exhibited significantly slower growth and higher levels of oxidative stress compared to other groups. While ATP levels (under mitochondrial inhibitors) and mitochondrial calcium uptake were significantly reduced in DSAD and AD cells, MMP was decreased in DS, DSAD, and AD LCLs. Finally, DS LCLs showed markedly reduced levels of the autophagy marker LC3-II, underscoring the close association between metabolic dysfunction and impaired autophagy in DS.
Conclusion: There are significant mitochondrial functional changes in LCLs derived from DS, DSAD, and AD patients. Several parameters analyzed were consistently different between DS, DSAD, and AD lines suggesting that metabolic indicators between LCL groups may be utilized as biomarkers of disease progression and/or treatment outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-160278 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
Department of Cardiology, Xinjiang Traditional Chinese Medicine Hospital, Xinjiang, China.
Schizophrenia (Heidelb)
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!