Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b02938 | DOI Listing |
BMJ Glob Health
January 2025
Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
Environ Res
January 2025
Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055 China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China.
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.
View Article and Find Full Text PDFEnviron Res
January 2025
Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P. R. China. Electronic address:
The use of purified hydrocolloids extracted from waste-activated sludge has significant potential for preventing seed deterioration caused by aging. In this study, we compared the advantages and disadvantages of 3 types of purified hydrocolloid seed coatings from different waste sludges and one commercial seed coating at different spraying times (2, 4, 6, and 8). Compared with coated maize seeds, uncoated maize seeds underwent significant functional changes during the aging process according to the infrared spectroscopy results.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Chemical Engineering Department, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:
Globalization resulted in technological advancement, and urban population growth. Consequently, pollution emerged as an imminent risk to the survival of all species on Earth. Consequently, on a worldwide basis, sustainability become a major issue for legislators.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!