This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274092PMC
http://dx.doi.org/10.3390/molecules21111423DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
24
ajwa dates
12
nitric oxide
8
oxide inhibitory
8
phenolic compounds
8
ajwa grade
8
grade al-aliah
8
al-aliah farm
8
ajwa
7
inhibitory
6

Similar Publications

The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis.

View Article and Find Full Text PDF

Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.

Fifteen novel carbazole alkaloids, euchrestifolines A-O (1-15), were obtained from Murraya euchrestifolia. Their structures were elucidated by spectroscopic analysis, Mosher's ester, calculated ECD, and transition metal complex ECD methods. Notably, euchrestifolines A-C (1-3) are the first naturally occurring pyrrolidone carbazoles to be identified, while euchrestifolines D-F (4-6) represent rare carbazole alkaloids containing a phenylpropanyl moiety; euchrestifoline G (7) features a unique benzopyranocarbazole skeleton.

View Article and Find Full Text PDF

Unlabelled: RamA is an intrinsic regulator in , belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of resulted in a fivefold decrease in the transcriptional levels of the operon.

View Article and Find Full Text PDF

Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.

Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.

View Article and Find Full Text PDF

This study hypothesizes that eugenol, due to its structural properties, can inhibit glucosyltransferase activity, thereby reducing polysaccharide synthesis in Typhimurium biofilms. It was found that eugenol exhibited minimum inhibitory and bactericidal concentrations of 0.6 mg mL and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!