Herein the photophysical properties of hydrogenated fullerenes (fulleranes) synthesized by direct hydrogenation utilizing hydrogen pressure (100 bar) and elevated temperatures (350 °C) are compared to the fulleranes CH and CH synthesized by amine reduction and the Birch reduction, respectively. Through spectroscopic measurements and density functional theory (DFT) calculations of the HOMO-LUMO gaps of CH (0 ≤ x ≤ 60), we show that hydrogenation significantly affects the electronic structure of C by decreasing conjugation and increasing sp hybridization. This results in a blue shift of the emission maximum as the number of hydrogen atoms attached to C increases. Correlations in the emission spectra of CH produced by direct hydrogenation and by chemical methods also support the hypothesis of the formation of CH and CH during direct hydrogenation with emission maxima of 435 and 550 nm respectively. We also demonstrate that photophysical tunability, stability, and solubility of CH in a variety of organic solvents make them easily adaptable for application as luminescent down-shifters in heads-up displays, light-emitting diodes, and luminescent solar concentrators. The utilizization of carbon based materials in these applications can potentially offer advantages over commonly utilized transition metal based quantum dot chromophores. We therefore propose that the controlled modification of C provides an excellent platform for evaluating how individual chemical and structural changes affect the photophysical properties of a well-defined carbon nanostructure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr05998hDOI Listing

Publication Analysis

Top Keywords

direct hydrogenation
12
photophysical properties
8
fulleranes synthesized
8
investigation hydrogen
4
hydrogen induced
4
induced fluorescence
4
fluorescence potential
4
potential luminescence
4
luminescence shifting
4
shifting applications
4

Similar Publications

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Green extraction and IC analysis of trace impurities in TATB through deep eutectic solvents.

J Chromatogr A

January 2025

School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, PR China. Electronic address:

1,3,5-trinamino-2,4,6-trinitrobenzene (TATB) as an important insensitive high explosive has excellent safety performance due to strong hydrogen bonds. Ionic impurities including sulfate ions (SO), nitrate ions (NO) and chloride ions (Cl) formed during the preparation of TATB have negative effects on TATB-based explosives. However, strong hydrogen bonds result in extremely low solubility of TATB in traditional solvents, which poses a huge obstacle to extract and detect the impurities in TATB for quality control.

View Article and Find Full Text PDF

Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.

View Article and Find Full Text PDF

Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.

View Article and Find Full Text PDF

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!