Background: Biological pathways are subsets of the complex biomolecular wiring that occur in living cells. They are usually rationalized and depicted in cartoon maps or charts to show them in a friendly visible way. Despite these efforts to present biological pathways, the current progress of bioinformatics indicates that translation of pathways in networks can be a very useful approach to achieve a computer-based view of the complex processes and interactions that occurr in a living system.
Results: We have developed a bioinformatic tool called Path2enet that provides a translation of biological pathways in protein networks integrating several layers of information about the biomolecular nodes in a multiplex view. Path2enet is an R package that reads the relations and links between proteins stored in a comprehensive database of biological pathways, KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/ ), and integrates them with expression data from various resources and with data on protein-protein physical interactions. Path2enet tool uses the expression data to determine if a given protein in a network (i.e., a node) is active (ON) or inactive (OFF) in a specific cellular context or sample type. In this way, Path2enet reduces the complexity of the networks and reveals the proteins that are active (expressed) under specific conditions. As a proof of concept, this work presents a practical "case of use" generating the pathway-expression-networks corresponding to the NOTCH Signaling Pathway in human B- and T-lymphocytes. This case is produced by the analysis and integration in Path2enet of an experimental dataset of genome-wide expression microarrays produced with these cell types (i.e., B cells and T cells).
Conclusions: Path2enet is an open source and open access tool that allows the construction of pathway-expression-networks, reading and integrating the information from biological pathways, protein interactions and gene expression cell specific data. The development of this type of tools aims to provide a more integrative and global view of the links and associations that exist between the proteins working in specific cellular systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088520 | PMC |
http://dx.doi.org/10.1186/s12864-016-3066-7 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFInflammation
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.
View Article and Find Full Text PDFEMBO Mol Med
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
The exposome is the measure of all the exposures of an individual in a lifetime and how those exposures relate to health. Exposomics is the emerging field of research to measure and study the totality of the exposome. Exposomics can assist with molecular medicine by furthering our understanding of how the exposome influences cellular and molecular processes such as gene expression, epigenetic modifications, metabolic pathways, and immune responses.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFSci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!