The use of cadmium chalchogenide nanoprecipitates to obtain brightly coloured glasses enormously expanded by the beginning of the twentieth century, when the production of cadmium-based pigments was already well established. Six historical stained glass pieces produced between the late 1920s and modern days have been investigated in order to delineate the average size and the elemental composition of the nanocrystals. As non-invasive conditions are now mandatory when considering objects belonging to cultural heritage, Raman spectroscopy is used to measure the (average) elemental composition of the nanoparticles. Zinc substitution is also detected by the shifting of the Raman peak position. Moreover, a tentative evaluation of size distribution and crystallinity of the nanoparticles has been performed considering those parameters that are mainly influenced by the disorder of the system, such as Raman band width, surface phonons and the ratio between second and first order band intensities. A confirmation of the above-mentioned conclusion is searched by means of transmission electron microscopy (TEM) and local elemental analysis. Raman investigations allowed identifying a different and more pronounced disorder characterizing the oldest glasses, also verified by TEM observations, suggesting a different manufacture.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2016.0045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!