The "cancer immunogenomics" paradigm has facilitated the search for tumor-specific antigens over the last 4 years by applying comprehensive cancer genomics to tumor antigen discovery. We applied this methodology to identify tumor-specific "neoantigens" in the C57BL/6-derived GL261 and VM/Dk-derived SMA-560 tumor models. Following DNA whole-exome and RNA sequencing, high-affinity candidate neoepitopes were predicted and screened for immunogenicity by ELISPOT and tetramer analyses. GL261 and SMA-560 harbored 4,932 and 2,171 nonsynonymous exome mutations, respectively, of which less than half were expressed. To establish the immunogenicities of H-2K and H-2D candidate neoantigens, we assessed the ability of the epitopes predicted in silico to be the highest affinity binders to activate tumor-infiltrating T cells harvested from GL261 and SMA-560 tumors. Using IFNγ ELISPOT, we confirmed H-2D-restricted Imp3 (GL261) and Odc1 (SMA-560) along with H-2K-restricted E2f8 (SMA-560) as endogenous tumor-specific neoantigens that are functionally immunogenic. Furthermore, neoantigen-specific T cells to Imp3 and Odc1 were detected within intracranial tumors as well as cervical draining lymph nodes by tetramer analysis. By establishing the immunogenicities of predicted high-affinity neoepitopes in these models, we extend the immunogenomics-based neoantigen discovery pipeline to glioblastoma models and provide a tractable system to further study the mechanism of action of T cell-activating immunotherapeutic approaches in preclinical models of glioblastoma. Cancer Immunol Res; 4(12); 1007-15. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215735PMC
http://dx.doi.org/10.1158/2326-6066.CIR-16-0156DOI Listing

Publication Analysis

Top Keywords

glioblastoma models
8
gl261 sma-560
8
models
5
sma-560
5
endogenous neoantigen-specific
4
neoantigen-specific cd8
4
cd8 cells
4
cells identified
4
identified glioblastoma
4
models cancer
4

Similar Publications

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

Immunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.

View Article and Find Full Text PDF

Strategies for specific multimodal imaging of cancer-associated fibroblasts and applications in theranostics of cancer.

Mater Today Bio

February 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.

View Article and Find Full Text PDF

Enhancement of the nontumor component in newly diagnosed glioblastoma as a more accurate predictor of local recurrence location: a multicenter study.

Quant Imaging Med Surg

January 2025

Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Although the spatial heterogeneity of glioblastoma (GBM) can be clearly mapped by the habitats generated by magnetic resonance imaging (MRI), the means to accurately predicting the spatial location of local recurrence (SLLR) remains a significant challenge. The aim of this study was to identify the different degrees enhancement of GBM, including the nontumor component and tumor component, and determine their relationship with SLLR.

Methods: A retrospective analysis was performed from three tertiary medical centers, totaling 728 patients with 109 radiation-induced temporal lobe necrosis (TLN) of nasopharyngeal carcinoma (NPC) and 619 with GBM.

View Article and Find Full Text PDF

Purpose: In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated.

Procedures: Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!