Background: Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors.

Methods: We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing. A combination of network analysis (co-expression and biomedical text mining), transcriptomics, and circularized chromatin conformation capture (4C-seq) was applied to verify whether modified genes are part of the same disease network as known SMS-causing genes.

Results: Potentially deleterious variants were identified in nine of these individuals using whole-exome sequencing. Eight of these changes affect KMT2D, ZEB2, MAP2K2, GLDC, CASK, MECP2, KDM5C, and POGZ, known to be associated with Kabuki syndrome 1, Mowat-Wilson syndrome, cardiofaciocutaneous syndrome, glycine encephalopathy, mental retardation and microcephaly with pontine and cerebellar hypoplasia, X-linked mental retardation 13, X-linked mental retardation Claes-Jensen type, and White-Sutton syndrome, respectively. The ninth individual carries a de novo variant in JAKMIP1, a regulator of neuronal translation that was recently found deleted in a patient with autism spectrum disorder. Analyses of co-expression and biomedical text mining suggest that these pathologies and SMS are part of the same disease network. Further support for this hypothesis was obtained from transcriptome profiling that showed that the expression levels of both Zeb2 and Map2k2 are perturbed in Rai1 mice. As an orthogonal approach to potentially contributory disease gene variants, we used chromatin conformation capture to reveal chromatin contacts between RAI1 and the loci flanking ZEB2 and GLDC, as well as between RAI1 and human orthologs of the genes that show perturbed expression in our Rai1 mouse model.

Conclusions: These holistic studies of RAI1 and its interactions allow insights into SMS and other disorders associated with intellectual disability and behavioral abnormalities. Our findings support a pan-genomic approach to the molecular diagnosis of a distinctive disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088687PMC
http://dx.doi.org/10.1186/s13073-016-0359-zDOI Listing

Publication Analysis

Top Keywords

disease network
12
mental retardation
12
exome sequencing
8
co-expression biomedical
8
biomedical text
8
text mining
8
chromatin conformation
8
conformation capture
8
zeb2 map2k2
8
x-linked mental
8

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Adequate knowledge and awareness regarding diseases are essential for appropriate, high-quality healthcare. Female Genital Schistosomiasis (FGS) is a non-sexually transmitted gynaecological disease that is caused by the presence of Schistosoma haematobium eggs in the female genital tract and the resulting immune response that causes tissue damage. It is estimated to affect 56 million women, mostly in sub-Saharan Africa (SSA), where healthcare workers (HCWs) have limited awareness and knowledge of FGS.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic entailed a global health crisis, significantly affecting medical service delivery in Germany as well as elsewhere. While intensive care capacities were overloaded by COVID cases, not only elective cases but also non-COVID cases requiring urgent treatment unexpectedly decreased, potentially leading to a deterioration in health outcomes. However, these developments were only uncovered retrospectively.

View Article and Find Full Text PDF

In recent years, the healthcare data system has expanded rapidly, allowing for the identification of important health trends and facilitating targeted preventative care. Heart disease remains a leading cause of death in developed countries, often leading to consequential outcomes such as dementia, which can be mitigated through early detection and treatment of cardiovascular issues. Continued research into preventing strokes and heart attacks is crucial.

View Article and Find Full Text PDF

The delivery of accurate diagnoses is crucial in healthcare and represents the gateway to appropriate and timely treatment. Although recent large language models (LLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning, their effectiveness in clinical diagnosis remains unproven. Here we present MedFound, a generalist medical language model with 176 billion parameters, pre-trained on a large-scale corpus derived from diverse medical text and real-world clinical records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!