A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia. | LitMetric

Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia.

Cell Oncol (Dordr)

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

Published: February 2017

Purpose: Despite vast improvements that have been made in the treatment of children with acute lymphoblastic leukemia (ALL), the majority of infant ALL patients (~80 %, < 1 year of age) that carry a chromosomal translocation involving the mixed lineage leukemia (MLL) gene shows a poor response to chemotherapeutic drugs, especially glucocorticoids (GCs), which are essential components of all current treatment regimens. Although addressed in several studies, the mechanism(s) underlying this phenomenon have remained largely unknown. A major drawback of most previous studies is their primary focus on individual genes, thereby neglecting the putative significance of inter-gene correlations. Here, we aimed at studying GC resistance in MLL-rearranged infant ALL patients by inferring an associated module of genes using co-expression network analysis. The implications of newly identified candidate genes with associations to other well-known relevant genes from the same module, or with associations to known transcription factor or microRNA interactions, were substantiated using literature data.

Methods: A weighted gene co-expression network was constructed to identify gene modules associated with GC resistance in MLL-rearranged infant ALL patients. Significant gene ontology (GO) terms and signaling pathways enriched in relevant modules were used to provide guidance towards which module(s) consisted of promising candidates suitable for further analysis.

Results: Through gene co-expression network analysis a novel set of genes (module) related to GC-resistance was identified. The presence in this module of the S100 and ANXA genes, both well-known biomarkers for GC resistance in MLL-rearranged infant ALL, supports its validity. Subsequent gene set net correlation analyses of the novel module provided further support for its validity by showing that the S100 and ANXA genes act as 'hub' genes with potentially major regulatory roles in GC sensitivity, but having lost this role in the GC resistant phenotype. The detected module implicates new genes as being candidates for further analysis through associations with known GC resistance-related genes.

Conclusions: From our data we conclude that available systems biology approaches can be employed to detect new candidate genes that may provide further insights into drug resistance of MLL-rearranged infant ALL cases. Such approaches complement conventional gene-wise approaches by taking putative functional interactions between genes into account.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-016-0303-7DOI Listing

Publication Analysis

Top Keywords

resistance mll-rearranged
16
mll-rearranged infant
16
genes
12
infant patients
12
co-expression network
12
acute lymphoblastic
8
lymphoblastic leukemia
8
network analysis
8
candidate genes
8
genes module
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!