Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren's pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks of age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed that early anti-CD40L greatly repressed B cell function while having a broader effect on multiple biological pathways, including interleukin-12 and interferon signaling. A single prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and nonobese diabetic mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest that early peripheral immune dysregulation gives rise to autoimmune manifestations later in life, and for diseases predated by autoantibodies, early prophylactic intervention with biologics may prove efficacious.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291695 | PMC |
http://dx.doi.org/10.1126/scitranslmed.aag0367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!