AI Article Synopsis

  • Clofazimine, an anti-leprosy drug, has shown potential against Mycobacterium tuberculosis but raises concerns about its early bactericidal activity in tuberculosis patients.
  • The study evaluated clofazimine's effectiveness over 14 days both in vitro and in vivo, finding no bactericidal activity in the first week but some concentration-dependent effects in the second week.
  • Results indicate that clofazimine’s delayed antimicrobial action is likely related to how the drug works rather than factors related to the host's immune response.

Article Abstract

Objectives: The anti-leprosy drug clofazimine has been shown to have antimicrobial activity against Mycobacterium tuberculosis and has been associated with treatment-shortening activity in both clinical and preclinical studies of TB chemotherapy. However, a reported lack of early bactericidal activity (EBA) in TB patients has raised questions regarding the usefulness of clofazimine as an anti-TB drug. Our objective was to systematically evaluate the EBA of clofazimine in vitro and in vivo to provide insight into how and when this drug exerts its antimicrobial activity against M. tuberculosis.

Methods: We evaluated the 14 day EBA of clofazimine (i) in vitro at concentrations ranging from 4 times below to 4 times above the MIC for M. tuberculosis and (ii) in vivo in infected BALB/c mice at doses ranging from 1.5 to 100 mg/kg/day, and serum clofazimine levels were measured. In both experiments, isoniazid was used as the positive control.

Results: In vitro, clofazimine, at any concentration tested, did not exhibit bactericidal activity during the first week of exposure; however, in the second week, it exhibited concentration-dependent antimicrobial activity. In vivo, clofazimine, at any dose administered, did not exhibit bactericidal activity during the first week, and limited antimicrobial activity was observed during the second week of administration. While serum clofazimine levels were clearly dose dependent, the antimicrobial activity was not significantly related to the dose administered.

Conclusions: Our data suggest that clofazimine's delayed antimicrobial activity may be due more to its mechanism of action rather than to host-related factors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkw417DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
28
bactericidal activity
12
activity
11
clofazimine
9
delayed antimicrobial
8
activity mycobacterium
8
mycobacterium tuberculosis
8
vitro vivo
8
eba clofazimine
8
clofazimine vitro
8

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Objective: Wound management can be costly and challenging to the health services' scarce resources. Information regarding the number of wounds in a community care setting and their associated aetiology will provide nurses and nurse managers with an insight into the specific needs of these clients with wounds and highlight areas where care or services can be improved or further developed. This research aimed to establish the prevalence and aetiology of wounds, the current delivery of wound care, wound documentation and referral pathways in an Irish community care setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!