Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interfollicular epidermal (IFE) homeostasis is a major physiological process allowing maintenance of the skin barrier function. Despite progress in our understanding of stem cell populations in different hair follicle compartments, cellular mechanisms of IFE maintenance, in particular, whether a hierarchy of progenitors exists within this compartment, have remained controversial. We here used multicolour lineage tracing with Brainbow transgenic labels activated in the epidermis to track individual keratinocyte clones. Two modes of clonal progression could be observed in the adult murine dorsal skin. Clones attached to hair follicles showed rapid increase in size during the growth phase of the hair cycle. On the other hand, clones distant from hair follicles were slow cycling, but could be mobilized by a proliferative stimulus. Reinforced by mathematical modelling, these data support a model where progenitor cycling characteristics are differentially regulated in areas surrounding or away from growing hair follicles. Thus, while IFE progenitors follow a non-hierarchical mode of development, spatiotemporal control by their environment can change their potentialities, with far-reaching implications for epidermal homeostasis, wound repair and cancer development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167353 | PMC |
http://dx.doi.org/10.15252/embj.201693806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!