Femtosecond charge and molecular dynamics of I-containing organic molecules induced by intense X-ray free-electron laser pulses.

Faraday Discuss

RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan. and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.

Published: December 2016

We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CHI). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (CHINO, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CHI and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fd00085aDOI Listing

Publication Analysis

Top Keywords

coulomb explosion
16
nuclear dynamics
12
charge redistribution
12
momentum correlation
12
ions created
12
charge
10
molecular dynamics
8
dynamics i-containing
8
i-containing organic
8
organic molecules
8

Similar Publications

Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

Trends Biotechnol

December 2024

Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12 (F), 21073 Hamburg, Germany. Electronic address:

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth.

View Article and Find Full Text PDF

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how bromoform (CHBr) behaves when exposed to near-infrared (NIR) light, focusing on its breakdown and isomerization in cationic states through advanced imaging techniques.
  • - It is observed that the dissociation process, particularly when forming HBr and Br fragments, occurs with a delay compared to the faster breakdown of the C-Br bond.
  • - Molecular dynamics simulations indicate that this delay results from temporary isomerization processes involving H- and Br-migrations before the final fragments are produced.
View Article and Find Full Text PDF

Rapidly stripping off multiple electrons from the target and triggering complete fragmentation with each constituent atom being charged up are ideal prerequisites for Coulomb explosion imaging. Here, we demonstrate that highly charged ion beam with energy in the Bragg peak region is a powerful tool capable of meeting these requirements. Using the 112.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!