As the most aggressive brain tumor, chemotherapy of malignant glioma remains to be extremely challenging in clinic. The blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) are physiological and pathological barriers preventing therapeutic drugs from reaching the glioma region. In addition, vasculogenic mimicry (VM) formed by invasive glioma cells instead of endothelial cells and angiogenesis are very common in glioma, leading to the poor prognosis and recurrence of glioma. An ideal drug delivery system for glioma chemotherapy needs to traverse the BBB and BBTB and then target VM, angiogenesis, and glioma cells. Herein we developed a liposome-based drug delivery system with the modification of proteolytically stable d-peptide ligands (CDX/A7R-LS). CDX is a d-peptide ligand of nicotine acetylcholine receptors (nAChRs) capable of circumventing the BBB, and A7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) overexpressed on angiogenesis, VM, and glioma, presenting excellent glioma-homing property. CDX/A7R-LS could efficiently internalize into the brain capillary endothelial cells, glioma cells, tumor neovascular endothelial cells, and tumor spheroids and cross the in vitro BBB and BBTB models. Ex vivo imaging and in vivo immunofluorescence assays confirmed the superiority of CDX/A7R-LS in targeting intracranial glioma in comparison to plain liposomes or liposomes modified with an individual d-peptide ligand (either CDX or A7R). When loaded with doxorubicin, CDX/A7R-LS achieved the best antiglioma, antiangiogenesis, and anti-VM effects among all tested formulations. These results suggested that systemic glioma-targeted drug delivery enabled by all-d peptide ligands was promising for the antiglioma therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b10146 | DOI Listing |
Nat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFACS Infect Dis
December 2024
Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India.
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!