The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.6b00251 | DOI Listing |
Med Oncol
September 2023
Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO, 80045, USA.
Anaplastic thyroid cancer (ATC) is a rare and aggressive disease with 90% of patients succumbing to this disease 1 year after diagnosis. The approval of the combination therapy of a BRAF inhibitor dabrafenib with the MEK1/2 inhibitor trametinib has improved the overall survival of ATC patients. However, resistance to therapy remains a major problem.
View Article and Find Full Text PDFBiochem Pharmacol
December 2022
Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India. Electronic address:
Cancer is a rapidly growing disease in modern society. Chemotherapy is the first choice for cancer treatment. Design and development of new chemotherapeutic drugs by targeting specific proteins are put down by a high attrition rate at different stages.
View Article and Find Full Text PDFCancer Res
December 2022
Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Unlabelled: Tumor suppressor mutations in head and neck squamous cell carcinoma (HNSCC) dominate the genomic landscape, hindering the development of effective targeted therapies. Truncating and missense mutations in NOTCH1 are frequent in HNSCC, and inhibition of PI3K can selectively target NOTCH1 mutant (NOTCH1MUT) HNSCC cells. In this study, we identify several proteins that are differentially regulated in HNSCC cells after PI3K inhibition based on NOTCH1MUT status.
View Article and Find Full Text PDFEur J Med Chem
December 2021
Department of Pharmacy, University of Pisa, 56126, Pisa, Italy; CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126, Pisa, Italy. Electronic address:
We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG).
View Article and Find Full Text PDFMol Oncol
January 2022
Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA.
Acquired resistance to conventional chemotherapeutic agents limits their effectiveness and can cause cancer treatment to fail. Because enzymes in the aurora kinase family are vital regulators of several mitotic events, we reasoned that targeting these kinases with tozasertib, a pan-aurora kinase inhibitor, would not only cause cytokinesis defects, but also induce cell death in high-grade pediatric and adult glioma cell lines. We found that tozasertib induced cell cycle arrest, increased mitochondrial permeability and reactive oxygen species generation, inhibited cell growth and migration, and promoted cellular senescence and pro-apoptotic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!