The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine.

Biotechnol Prog

The Wake Forest Institute for Regenerative Medicine, Wake Forest Center for Integrative Medicine, Medical Center Blvd, Winston-Salem, NC.

Published: January 2017

Directed cell migration and adhesion is essential to embryonic development, tissue formation and wound healing. For decades it has been reported that electric field (EF), magnetic field (MF) and electromagnetic field (EMF) can play important roles in determining cell differentiation, migration, adhesion, and evenwound healing. Combinations of these techniques have revealed new and exciting explanations for how cells move and adhere to surfaces; how the migration of multiple cells are coordinated and regulated; how cellsinteract with neighboring cells, and also to changes in their microenvironment. In some cells, speed and direction are voltage dependent. Data suggests that the use of EF, MF and EMF could advance techniques in regenerative medicine, tissue engineering and wound healing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:5-16, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2371DOI Listing

Publication Analysis

Top Keywords

migration adhesion
12
electromagnetic field
8
directed cell
8
cell migration
8
regenerative medicine
8
wound healing
8
electric magnetic
4
magnetic electromagnetic
4
field
4
field directed
4

Similar Publications

The endothelium at the interface between tissues and in the bloodstream.

Clin Microbiol Rev

January 2025

Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Pericytes are essential for capillary stability and homeostasis, with impaired pericyte function linked to diseases like pulmonary arterial hypertension. Investigating pericyte biology has been challenging due to the lack of specific markers, making it difficult to distinguish pericytes from other stromal cells. Using bioinformatic analysis and RNAscope, we identified Higd1b as a unique gene marker for pericytes and subsequently generated a knock-in mouse line, Higd1b-CreERT2, that accurately labels pericytes in the lung and heart.

View Article and Find Full Text PDF

[Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.

Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.

View Article and Find Full Text PDF

Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!