Detection of Cohesin SUMOylation In Vivo.

Methods Mol Biol

Cell Cycle Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.

Published: January 2018

Cohesin is a protein complex with key roles in chromosome biology, from chromatid segregation to DNA repair. Cohesin function is regulated by several posttranslational modifications, including phosphorylation, acetylation, ubiquitylation, and SUMOylation. Recent studies have shown that cohesin SUMOylation is essential for sister chromatid cohesion during normal cell cycle and in response to DNA damage. Posttranslational modification by the small ubiquitin-like modifier (SUMO) is a field in expansion, however, detecting SUMOylation can be challenging because the amount of modified substrates are usually low and de-conjugation during sample preparation often occurs. In this chapter we describe a method that can be adapted to different model organisms, and substrates to detect SUMOylation. We focus on cohesin and show that SUMOylation indeed occurs in most of the subunits of budding yeast cohesin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6545-8_4DOI Listing

Publication Analysis

Top Keywords

cohesin sumoylation
12
sumoylation
6
cohesin
5
detection cohesin
4
sumoylation vivo
4
vivo cohesin
4
cohesin protein
4
protein complex
4
complex key
4
key roles
4

Similar Publications

Smc5/6 silences episomal transcription by a three-step function.

Nat Struct Mol Biol

September 2022

Department of Microbiology and Molecular Medicine, University Medical Centre, Geneva, Switzerland.

In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process.

View Article and Find Full Text PDF

Smc5/6, like cohesin and condensin, is a structural maintenance of chromosomes complex crucial for genome stability. Unlike cohesin and condensin, Smc5/6 carries an essential Nse2 subunit with SUMO E3 ligase activity. While screening for new DNA replication checkpoint mutants in fission yeast, we have identified two previously uncharacterized mutants in Smc5/6.

View Article and Find Full Text PDF

Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments.

Cell Rep

March 2022

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair.

View Article and Find Full Text PDF

SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover.

Cell Rep

August 2021

IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy. Electronic address:

Structural maintenance of chromosomes (SMCs) complexes, cohesin, condensin, and Smc5/6, are essential for viability and participate in multiple processes, including sister chromatid cohesion, chromosome condensation, and DNA repair. Here we show that SUMO chains target all three SMC complexes and are antagonized by the SUMO protease Ulp2 to prevent their turnover. We uncover that the essential role of the cohesin-associated subunit Pds5 is to counteract SUMO chains jointly with Ulp2.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!