Analysis of Mammary Gland Phenotypes by Transplantation of the Genetically Marked Mammary Epithelium.

Methods Mol Biol

The Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Station 19, CH-1015, Lausanne, Switzerland.

Published: January 2018

The mammary gland is the only organ to undergo most of its development after birth and therefore particularly attractive for studying developmental processes. In the mouse, powerful tissue recombination techniques are available that can be elegantly combined with the use of different genetically engineered mouse models to study development and differentiation in vivo.In this chapter, we describe how epithelial intrinsic gene function can by discerned by grafting mammary epithelial cells of different genotypes to wild-type recipients. Either pieces of mammary epithelial tissue or dissociated mammary epithelial cells are isolated from donor mice and subsequently transplanted into recipients whose mammary fat pads were divested of their endogenous epithelium. This is followed by phenotypic characterization of the epithelial outgrowth either by fluorescence stereomicroscopy for the fluorescently marked grafts or carmine alum whole mount for the unmarked epithelia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6475-8_4DOI Listing

Publication Analysis

Top Keywords

mammary epithelial
12
mammary gland
8
epithelial cells
8
mammary
6
epithelial
5
analysis mammary
4
gland phenotypes
4
phenotypes transplantation
4
transplantation genetically
4
genetically marked
4

Similar Publications

The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices.

View Article and Find Full Text PDF

To gain further insights into the importance of the unsaturated 1,4-ketoaldehyde moiety of ophiobolin A (OpA) for the potency and selectivity observed toward cancer stem cells, several derivatives were synthesized through controlled reduction and oxidations of the unsaturated aldehyde and ketone moieties. Structure elucidation of these new OpA derivatives was achieved through detailed NMR studies and comparison to OpA and known isolated congeners possessing variations in these regions. The relative stereochemistry of the newly generated stereocenters was determined by coupling constants in conjunction with conformational analyses (DFT) of the synthetic derivatives.

View Article and Find Full Text PDF

Copper excess induces autophagy dysfunction and mitochondrial ROS-ferroptosis progression, inhibits cellular biosynthesis of milk protein and lipid in bovine mammary epithelial cells.

Ecotoxicol Environ Saf

January 2025

College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:

Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!