Semi-classical electrons offer access to efficient and intuitive simulations of chemical reactions. As for any treatment of fermions, the greatest difficulty is in accounting for anti-symmetry effects. Semi-classical efforts to-date either reference Slater-determinants from ab initio treatments or adopt a heuristic approach inspired by density functional treatments. Here we revisit the problem with a combined approach. We conclude that semi-classical electrons need to reference a non-conventional wave function and find that (1) contrary to earlier suppositions, contributions from the electrostatic terms in the Hamiltonian are of similar magnitude to those from the kinetic terms and (2) the former point to a need to supplement pair potentials with 3-body potentials. The first result explains features of reported heuristic potentials, and the second provides a firm footing for extending the transferability of potentials across a wider range of elements and bonding scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp06100a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!