We previously established a rat model of diabetic cardiomyopathy (DCM) and found that the expression of lncRNA H19 was significantly downregulated. The present study was designed to investigate the pathogenic role of H19 in the development of DCM. Overexpression of H19 in diabetic rats attenuated oxidative stress, inflammation and apoptosis, and consequently improved left ventricular function. High glucose was associated with reduced H19 expression and increased cardiomyocyte apoptosis. To explore the molecular mechanisms involved, we performed in vitro experiments using cultured neonatal rat cardiomyocytes. Our results showed that miR-675 expression was decreased in cardiomyocytes transfected with H19 siRNA. The 3'UTR of VDAC1 was cloned downstream of a luciferase reporter construct and cotransfected into HEK293 cells with miR-675 mimic. The results of luciferase assay indicated that VDAC1 might be a direct target of miR-675. The expression of VDAC1 was upregulated in cardiomyocytes transfected with miR-675 antagomir, which consequently promotes cellular apoptosis. Moreover, enforced expression of H19 was found to reduce VDAC1 expression and inhibit apoptosis in cardiomyocytes exposed to high glucose. In conclusion, our study demonstrates that H19/miR-675 axis is involved in the regulation of high glucose-induced apoptosis by targeting VDAC1, which may provide a novel therapeutic strategy for the treatment of DCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087087PMC
http://dx.doi.org/10.1038/srep36340DOI Listing

Publication Analysis

Top Keywords

h19/mir-675 axis
8
cardiomyocyte apoptosis
8
apoptosis targeting
8
targeting vdac1
8
diabetic cardiomyopathy
8
high glucose
8
mir-675 expression
8
cardiomyocytes transfected
8
apoptosis
6
vdac1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!