For the double MgO based perpendicular magnetic tunneling junction (p-MTJ) spin-valves with a top CoFeB free layer ex situ annealed at 400 °C, the tunneling-magnetoresistance ratio (TMR) strongly depended on the platinum (Pt) seed layer thickness (t ): it peaked (∼134%) at a specific t (3.3 nm). The TMR ratio was initially and slightly increased from 113%-134% by the enhancement of the magnetic moment of the CoFeB pinned layer when t increased from 2.0-3.3 nm, and then rapidly decreased from 134%-38.6% by the degrading face-centered-cubic crystallinity of the MgO tunneling barrier when t increased from 3.3-14.3 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/48/485203 | DOI Listing |
Materials (Basel)
January 2025
Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (ICT KSC RAS), Apatity 184209, Murmansk Region, Russia.
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.
View Article and Find Full Text PDFNutrients
December 2024
Bionos Biotech SL, LabAnalysis Life Science, Biopolo Hospital La Fe, 46026 Valencia, Spain.
Background/objectives: Magnesium (Mg)-based food supplements contribute to the maintenance of adequate levels of Mg that are essential for overall health and well-being. The aim of this double-blind, randomized, cross-over clinical study was to assess the plasma Mg levels in volunteers following the oral administration of a magnesium-based nutraceutical ingredient, MAGSHAPE microcapsules (Mg-MS), in comparison to other commonly used magnesium sources, including the following: Mg Oxide (MgO), Mg Citrate (Mg-C), and Mg bisglycinate (Mg-BG).
Methods: A total of 40 healthy women and men were put on a low-Mg diet for 7 days, and after 8 h of fasting, a blood sample was taken from a digital puncture before (0 h) and 1 h, 4 h, and 6 h after the oral intake of each product.
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.
Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!