The aim of this study was to evaluate the in vitro and in vivo efficacy of paclitaxel-lapatinib-loaded Pluronic micelles. Lapatinib and pluronic sensitize the cancerous cells to paclitaxel via efflux pump inhibition. In addition, pluronic polymers can trigger intrinsic apoptosis pathways. Furthermore, micellar system can passively target the chemotherapeutic agents by enhanced permeability and retention effect. The paclitaxel-lapatinib-loaded micelles were characterized in means of encapsulation efficacy and size. The in vitro analyses were performed by MTT assay and uptake studies. Real-time imaging and in vivo anti-tumor efficacy studies were also performed. The prepared micelles have acceptable encapsulation ratio and size. Hemolysis assay confirmed that the micelles are hemo-compatible. MTT assay demonstrated that drug-loaded micelles have superior cytotoxicity compared with the naked drugs. The confocal microscopy and flowcytometry analyses showed that micelles are mainly internalized by endocytosis. According to the results of the in vivo imaging, the micelles are accumulated within liver. In vivo anti-tumor efficacy studies confirmed that tumor inhibition of drug-loaded micelles was significant compared to Intaxel.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2016.1254238DOI Listing

Publication Analysis

Top Keywords

micelles
9
vitro vivo
8
pluronic micelles
8
mtt assay
8
vivo anti-tumor
8
anti-tumor efficacy
8
efficacy studies
8
drug-loaded micelles
8
vivo evaluation
4
evaluation paclitaxel-lapatinib-loaded
4

Similar Publications

: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.

View Article and Find Full Text PDF

Preparation and In Vitro/In Vivo Characterization of Mixed-Micelles-Loaded Dissolving Microneedles for Sustained Release of Indomethacin.

Pharmaceutics

November 2024

Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.

Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.

View Article and Find Full Text PDF

Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.

View Article and Find Full Text PDF

Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.

View Article and Find Full Text PDF

Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties.

Polymers (Basel)

December 2024

Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.

Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!