Biological potency and characterization of antibacterial substances produced by isolated from , a fermented fish product of North-East India.

Springerplus

Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia.

Published: October 2016

Lactic acid bacteria (LAB) isolated from various foods are important due to their potential to inhibit microorganisms, including drug-resistant bacteria. The objectives of this investigation were to isolate and identify antibacterial substances producing LAB from , a traditional fermented fish product of Manipur (North-East India), and to optimize the production of antagonistic substances present in cell free neutralized supernatant (CFNS) against enteric bacterial pathogens using the 'one factor at a time' (OFAT) method. Out of 10 LAB, the most potent bacterium producing antibacterial substances was isolated and identified as strain LAP1 based upon morphological, biochemical and molecular characterization. MRS (de Man, Ragosa and Sharpe) medium was determined to provide better bactericidal activity (AU/ml) than other tested media against the indicator enteric bacteria, including MTTC 3615, MTCC 106, MTCC 1457, MTCC 840 and MTCC 1771. The culture conditions (pH: 5, temperature: 30 °C and inoculum volume: 1 %) and medium components (carbon source: lactose and nitrogen source: ammonium chloride) were observed to be the most influential parameters of significant antagonistic activity of CFNS against the enteric pathogens. MRS medium supplemented with Tween20 effectively stimulated the yield of antibacterial substances. The CFNS of strain LAP1 exhibited sensitivity to proteolytic enzyme (pepsin) treatment and heat treatment (60 °C for 60 min, 100 °C for 30 min and 121 °C for 15 min) and lost its inhibitory properties. The CFNS was active at an acidic (pH 3.0) to neutral pH (pH 7.0) but lost its antagonistic properties at an alkaline pH. The CFNS obtained from strain LAP1 scavenges the DPPH (1,1-diphenyl-2 picrylhydrazyl) significantly in a concentration-dependent manner within the range of 8.8 ± 0.12-57.35 ± 0.1 %. The OFAT-based approach revealed the baseline for statistical optimization, the scale-up process and efficient production of CFNS by strain LAP1, which could be used as a potential antibacterial and free radical scavenging agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055530PMC
http://dx.doi.org/10.1186/s40064-016-3452-2DOI Listing

Publication Analysis

Top Keywords

antibacterial substances
16
strain lap1
16
cfns strain
12
fermented fish
8
fish product
8
north-east india
8
cfns enteric
8
cfns
6
antibacterial
5
substances
5

Similar Publications

Effects of ORF14 gene on melanin expression, fermentation conditions and properties of melanin production in modified strains.

J Biotechnol

January 2025

Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 China.

Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway.

View Article and Find Full Text PDF

Legumes are an interesting matrix for food production. The aim of this study was to develop functional plant-based snacks using fermented red bean (RBB) seeds enriched with the following additives: marjoram-RBM (2%); carrot-RBC (30%); and red beetroot-RBRB (15%). In the process of constructing the snacks, the focus was on the maximum use of the raw material, including aquafaba, to improve nutritional properties, sensory acceptability, and biological activity.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane has been identified as a lead, with MICs of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!