Two previously reported insulin receptor cDNA sequences differ by 36 base pairs (bp) in the distal alpha-subunit, suggesting that alternative mRNA splicing within the coding region may occur (two insulin receptor isoforms). We developed a quantitative modification of the polymerase chain reaction technique in order to detect and characterize differential mRNA splicing at this site within the distal alpha-subunit. Using RNA derived from a variety of human cell types, we detected two polymerase chain reaction-amplified cDNA species reflecting the presence or absence of the above 36 nucleotides. Identity of the two cDNA species was confirmed by Southern blots, the use of a BANI restriction site present only in the 36 base pair segment and dideoxy sequencing. The relative expression of the two mRNA forms varied markedly in a tissue-specific manner. Buffy coat leukocytes and Epstein-Barr virus-transformed lymphocytes express only the shorter mRNA. Placenta expresses both species equally; muscle, isolated adipocytes and cultured fibroblasts express somewhat more of the longer mRNA (relative ratios of mRNA abundance of 1.51, 3.18, and 2.77, respectively); liver expresses mostly the longer mRNA (relative ratio of 9.8). In RNA derived from cultured and fresh cells from patients with several states of insulin resistance, the relative expression of the two mRNA species was similar to results obtained with comparable normal tissues. Although the functional significance of alternative splicing of the insulin receptor mRNA is unknown, differential expression of these two receptor mRNAs may provide a structural basis for previously observed tissue-specific differences in insulin binding and action.

Download full-text PDF

Source
http://dx.doi.org/10.1210/mend-3-8-1263DOI Listing

Publication Analysis

Top Keywords

insulin receptor
16
mrna
9
receptor mrnas
8
distal alpha-subunit
8
mrna splicing
8
polymerase chain
8
rna derived
8
cdna species
8
relative expression
8
expression mrna
8

Similar Publications

Drayer Syndrome due to Chromosome 15q26.3 Deletion: Response to Growth Hormone Treatment.

Sisli Etfal Hastan Tip Bul

December 2024

Division of Pediatric Endocrinology, Department of Pediatrics, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye.

Chromosome 15q26 deletion is a rare condition that causes short stature and is associated with intrauterine growth restriction (IUGR), failure to thrive, congenital heart disease and many congenital malformations. The insulin growth factor receptor (IGF-1R) on chromosome 15 has many important roles, especially in growth regulation. Our case is an 18-month-old small for gestational age girl who presented with severe short stature, microcephaly and minor dysmorphic features.

View Article and Find Full Text PDF

FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.

View Article and Find Full Text PDF

Background: Data on the carcinogenic potential of tirzepatide from randomized controlled trials (RCTs) are limited. Furthermore, no meta-analysis has included all relevant RCTs to assess the cancer risk associated with tirzepatide.

Methods: RCTs involving patients receiving tirzepatide in the intervention arm and either a placebo or any active comparator in the control arm were searched through electronic databases.

View Article and Find Full Text PDF

Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China. Electronic address:

Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!