The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNF)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067333PMC
http://dx.doi.org/10.1155/2016/3453059DOI Listing

Publication Analysis

Top Keywords

cox-2 expression
12
higher cox-2
8
specific inhibitor
8
nitric oxide
8
cardiomyocyte h/r
8
expression
7
cox-2
6
h/r
5
cox-2 inhibition
4
inhibition protects
4

Similar Publications

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Background: Cadmium (Cd) is a toxic heavy metal present in environment that has potential to instigate renal toxicity. Didymin (DDM) is a natural flavone, which shows anti-oxidant, anti-inflammatory and antiapoptotic nature. Therefore, the current study was formulated to appraise attenuative potential of DDM against Cd instigated nephrotoxicity.

View Article and Find Full Text PDF

Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.

Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Background/purpose: Studies have demonstrated a relation between hypercholesterolemia and development of apical periodontitis (AP), but the underlying mechanism is uncertain. 27-hydroxycholesterol (27HC), produced by cytochrome P450 27A1 (CYP27A1)-catalyzed hydroxylation of cholesterol, is known to possess pro-inflammatory activity. Felodipine is an anti-hypertensive agent able to inhibit CYP27A1.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!