Current commercial tensile testing systems use spring-loaded or other compression-based grips to clamp materials in place posing a problem for very soft or delicate materials that cannot withstand this mechanical clamping force. In order to perform uniaxial tensile tests on soft tissues or materials, we have created a novel vacuum-assisted anchor (VAA). Fibrin gels were subjected to uniaxial extension, and the testing data was used to determine material mechanical properties. Utilizing the VAA, we achieved successful tensile breaks of soft fibrin gels while finding statistically significant differences between the mechanical properties of gels fabricated at two different fibrinogen concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082747 | PMC |
http://dx.doi.org/10.1080/1539445X.2016.1141787 | DOI Listing |
J Chem Theory Comput
January 2025
Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.
Sci Rep
January 2025
Key Laboratory of Geological Safety of Coastal Urban Underground Space, MNR, Qingdao, 266101, China.
To offer guidance for using Brazilian tensile strength (BTS) to estimate UCS of heterogeneous rocks, this study uses sandstone (fine or coarse grain) and gneiss (0°, 45°, 90° inclined anisotropy) to investigate the influence of grain size or anisotropy on the correlations of UCS-BTS. According to the regression analysis, there is no significant equation of UCS-BTS for rocks with vertical anisotropy. The grain size variation or multidirectional anisotropy can result in a decrease in the determination coefficient value of correlations.
View Article and Find Full Text PDFSci Rep
December 2024
College of Civil Engineering and Transportation, Hohai University, Nanjing, 210098, China.
The columnar joint skeleton of 3D printed Acrylonitrile Butadiene Styrene (ABS) material, the skeleton of cement mortar and ultraviolet aging treatment are combined to pour the columnar joint rock mass (CJRM) test block. The strength, deformation, energy and failure modes of the specimens with different dip angles were analyzed by uniaxial compression test. The influence of joint skeleton on the strength of the test block was analyzed.
View Article and Find Full Text PDFEur Burn J
December 2024
Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
The development of artificial skin that accurately mimics the mechanical properties of human skin is crucial for a wide range of applications, including surgical training for burn injuries, biomechanical testing, and research in sports injuries and ballistics. While traditional materials like gelatin, polydimethylsiloxane (PDMS), and animal skins (such as porcine and bovine skins) have been used for these purposes, they have inherent limitations in replicating the intricate properties of human skin. In this work, we conducted uniaxial tensile tests on freshly obtained cadaveric skin to analyze its mechanical properties under various loading conditions.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:
Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!