AI Article Synopsis

Article Abstract

This study examined channel interactions using interleaved pulse trains to assess masking and potential facilitative effects in cochlear-implant recipients using clinically relevant stimuli. Psychophysical thresholds were measured for two adjacent mid-array electrodes; one served as the masker and the other as the probe. Two rates representative of those found in present-day strategies were tested: 1700 and 3400 pulses per second per channel. Four masker levels ranging from sub-threshold to loud-but-comfortable were tested. It was hypothesized that low-level maskers would produce facilitative effects, shifting to masking effects at high levels, and that faster rates would yield smaller masking effects due to greater stochastic neural firing patterns. Twenty-nine ears with Cochlear or Advanced Bionics devices were tested. High-level maskers produced more masking than low-level maskers, as expected. Facilitation was not observed for sub-threshold or threshold-level maskers in most cases. High masker levels yielded reduced probe thresholds for two Advanced Bionics subjects. This was partly eliminated with a longer temporal offset between each masker-probe pulse pair, as was used with Cochlear subjects. These findings support the use of temporal gaps between stimulation of subsequent electrodes to reduce channel interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910005PMC
http://dx.doi.org/10.1121/1.4963903DOI Listing

Publication Analysis

Top Keywords

psychophysical thresholds
8
interleaved pulse
8
pulse trains
8
channel interactions
8
facilitative effects
8
masker levels
8
low-level maskers
8
masking effects
8
advanced bionics
8
effects
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!