A parametric study was conducted using the numerical technique that coupled a three-dimensional continuum vocal fold model with a one-dimensional Bernoulli flow model to investigate the effect of vocal fold vertical stiffness variation on voice production. Vertical stiffness gradient was defined as the ratio of the inferior-superior stiffness difference to the mean stiffness and was introduced in the cover layer. The results showed that increasing the vertical stiffness gradient would increase the peak flow rate and sound intensity and decrease the open quotient and threshold pressure. The effect was found to be more prominent at low subglottal pressures. The underlying mechanism might be that the reduced stiffness at the superior aspect of the vocal fold would allow a larger lateral displacement and result in a larger vibration. Increasing the vertical stiffness gradient was also found to increase the vertical phase difference and glottal divergent angle during the vocal fold vibration. Meanwhile, increasing the vertical stiffness variation only slightly increased the mean flow rate, which is important to maintaining the speech time between breaths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848868 | PMC |
http://dx.doi.org/10.1121/1.4964508 | DOI Listing |
J Am Podiatr Med Assoc
January 2025
‡Canakkale Onsekiz Mart University Medical Faculty, Department of Orthopedics and Traumatology, Çanakkale, Turkey.
Background: The aim of study was to biomechanically compare the fixation of Jones fracture using headless cannulated screw, tension band, and two Kirschner wires.
Methods: A total of 60 fourth-generation, fifth metatarsal synthetic bone models were divided into three groups according to the fixation techniques. A vertical load, oriented from plantar to dorsal and lateral to medial, was applied to the metatarsal specimen that were potted with molding material.
BMC Musculoskelet Disord
January 2025
Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.
Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
Introduction: Validated models describing the biomechanics of tooth extraction are scarce. This study seeks to perform experimental and numerical characterization of vertical tooth extraction biomechanics in swine incisors with imposed vertical extraction loads. Imaging analysis related mechanical outcomes to tooth geometry and applied loading rate.
View Article and Find Full Text PDFFront Physiol
January 2025
Sports Science School, Beijing Sport University, Beijing, China.
Purpose: This study aimed to explore the effects of neural and muscular factors on lower limb explosive strength in male college sprinters, and build models based on those factors to identify the key neuromuscular factors that predict the rate of force development (RFD) and 30 m sprint time.
Method: 15 male college sprinters were recruited in this study, with 100 m personal best times under 10.93 s.
Sports Biomech
January 2025
School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
Pelvic running injuries often require extensive rehabilitation and pelvic girdle pain is a barrier to running engagement in population sub-groups, such as perinatal women. However, exploration into how external pelvic loading may be altered during running is limited. This study assessed which biomechanical variables influence changes in external peak pelvic acceleration during treadmill running, across various stride frequency conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!