Background: GSKJ4, an H3K27 demethylase inhibitor, reportedly exhibits antitumor activity against specific cancers harboring genetic alterations in genes encoding chromatin modulators. However, its potential as an anticancer agent against human cancers not associated with such genetic alterations, including non-small cell lung cancer (NSCLC), remains unknown.
Materials And Methods: The effect of GSKJ4 on the growth of three NSCLC cell lines and normal lung fibroblasts was investigated using the WST-8, dye exclusion, and colony formation assays.
Results: GSKJ4, alone and in combination with an anti-diabetic drug metformin, induced cell death and inhibited the growth of NSCLC cell lines efficiently at concentrations non-toxic to normal cells, irrespective of their genetic backgrounds (mutations in the KRAS, TP53 and EGFR genes) and also of their resistance to cisplatin and paclitaxel.
Conclusion: GSKJ4, being a promising anticancer agent for NSCLC, may be effective against a wider spectrum of cancers than previously thought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.11198 | DOI Listing |
Cancer Med
January 2025
Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Pharmacy, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
View Article and Find Full Text PDFLife (Basel)
December 2024
Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo-UNIFESP, Diadema 09913-030, Brazil.
Background: Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs).
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFNeuromolecular Med
November 2024
Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India.
Cerebral ischemic stroke ranks among the leading causes of death and disability worldwide. A significant challenge, beyond the lack of effective therapies, is the frequent oversight of sex as a vital factor in stroke research. This study focuses on elucidating the sex-specific epigenetic mechanisms that contribute to neural damage and recovery in cerebral ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!