From solvent-free microspheres to bioactive gradient scaffolds.

Nanomedicine

Marquette University School of Dentistry, Milwaukee, WI, USA; Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA. Electronic address:

Published: April 2017

A solvent-free microsphere sintering technique was developed to fabricate scaffolds with pore size gradient for tissue engineering applications. Poly(D,L-Lactide) microspheres were fabricated through an emulsification method where TiO nanoparticles were employed both as particulate emulsifier in the preparation procedure and as surface modification agent to improve bioactivity of the scaffolds. A fine-tunable pore size gradient was achieved with a pore volume of 30±2.6%. SEM, EDX, XRD and FTIR analyses all confirmed the formation of bone-like apatite at the 14 day of immersion in Simulated Body Fluid (SBF) implying the ability of our scaffolds to bond to living bone tissue. In vitro examination of the scaffolds showed progressive activity of the osteoblasts on the scaffold with evidence of increase in its mineral content. The bioactive scaffold developed in this study has the potential to be used as a suitable biomaterial for bone tissue engineering and hard tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2016.10.008DOI Listing

Publication Analysis

Top Keywords

pore size
8
size gradient
8
tissue engineering
8
bone tissue
8
scaffolds
5
solvent-free microspheres
4
microspheres bioactive
4
bioactive gradient
4
gradient scaffolds
4
scaffolds solvent-free
4

Similar Publications

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Microstructural Characteristics of Cellulosic Fiber-Reinforced Cement Composite.

Materials (Basel)

December 2024

Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.

The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.

View Article and Find Full Text PDF

A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.

View Article and Find Full Text PDF

The influence of different pore sizes on the compressive strength and elastic modulus of recycled concrete is an important issue in the academic circle. Aiming at this problem, a quantitative characterization model of the compressive strength and elastic modulus of recycled concrete based on pore grading was established in this paper. The compressive strength, elastic modulus, porosity and distribution of pore size of recycled concrete were measured by a concrete test and nuclear magnetic resonance technology, and the influences of different pore sizes on the compressive strength and elastic modulus of recycled concrete were analyzed, and the rationality of the quantitative characterization model was verified.

View Article and Find Full Text PDF

The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!