Personalized anticancer therapy requires continuous consolidation of emerging bioinformatics data into meaningful and accurate information streams. The use of novel mathematical and physical approaches, namely topology and thermodynamics can enable merging differing data types for improved accuracy in selecting therapeutic targets. We describe a method that uses chemical thermodynamics and two topology measures to link RNA-seq data from individual patients with academically curated protein-protein interaction networks to select clinically relevant targets for treatment of low-grade glioma (LGG). We show that while these three histologically distinct tumor types (astrocytoma, oligoastrocytoma, and oligodendroglioma) may share potential therapeutic targets, the majority of patients would benefit from more individualized therapies. The method involves computing Gibbs free energy of the protein-protein interaction network and applying a topological filtration on the energy landscape to produce a subnetwork known as persistent homology. We then determine the most likely best target for therapeutic intervention using a topological measure of the network known as Betti number. We describe the algorithm and discuss its application to several patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386643PMC
http://dx.doi.org/10.18632/oncotarget.12932DOI Listing

Publication Analysis

Top Keywords

personalized anticancer
8
anticancer therapy
8
topology thermodynamics
8
therapeutic targets
8
protein-protein interaction
8
therapy selection
4
selection molecular
4
molecular landscape
4
landscape topology
4
thermodynamics personalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!