The molecular basis of second messenger signaling relies on an array of proteins that synthesize, degrade or bind the molecule to produce coherent functional outputs. Cyclic di-GMP (c-di-GMP) has emerged as a eubacterial nucleotide second messenger regulating a plethora of key behaviors, like the transition from planktonic cells to biofilm communities. The striking multiplicity of c-di-GMP control modules and regulated cellular functions raised the question of signaling specificity. Are c-di-GMP signaling routes exclusively dependent on a central hub or can they be locally administrated? In this study, we show an example of how c-di-GMP signaling gains output specificity in Pseudomonas aeruginosa. We observed the occurrence in P. aeruginosa of a c-di-GMP synthase gene, hsbD, in the proximity of the hptB and flagellar genes cluster. We show that the HptB pathway controls biofilm formation and motility by involving both HsbD and the anti-anti-sigma factor HsbA. The rewiring of c-di-GMP signaling into the HptB cascade relies on the original interaction between HsbD and HsbA and on the control of HsbD dynamic localization at the cell poles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085249PMC
http://dx.doi.org/10.1371/journal.pgen.1006354DOI Listing

Publication Analysis

Top Keywords

c-di-gmp signaling
12
pseudomonas aeruginosa
8
second messenger
8
c-di-gmp
6
hsbd
5
signaling
5
diguanylate cyclase
4
cyclase hsbd
4
hsbd intersects
4
hptb
4

Similar Publications

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis.

J Agric Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.

Article Synopsis
  • Cyclic diguanosine monophosphate (c-di-GMP) plays a vital role in regulating the synthesis of bacterial cellulose (BC) and is managed by enzymes known as diguanylate cyclases (DGCs) and phosphodiesterases (PDEs).
  • A study analyzed ten proteins with GGDEF-EAL tandem domains, revealing five with DGC activity and five with PDE activity, with one protein (GE03) displaying both functions.
  • Mutant strains lacking GGDEF-EAL proteins showed significant changes in BC production, while knocking out PDE proteins resulted in a 48.1% increase in BC titer, enhancing the understanding of c-di-GMP's role in BC
View Article and Find Full Text PDF

Deciphering the code of temperature rise on aerobic granular sludge stability: A DSF-c-di-GMP mediated regulatory mechanism.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China. Electronic address:

Diffusible signal factor (DSF)-c-di-GMP-mediated strategies have been proposed as an effective regulatory approach for signal molecules in aerobic granular sludge (AGS). The increase in temperature from low to normal levels had a significant impact on AGS stability. In this study, two reactors were established to investigate the effects of different temperature rise modes (abrupt or gradual) on AGS stability.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Surface sensing is a key aspect of the early stage of biofilm formation. For , the type IV pili (TFP), the TFP alignment complex and PilY1 were shown to play a key role in c-di-GMP signaling upon surface contact. The role of the flagellar machinery in surface sensing is less well understood in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!