Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Information about the interface sites of Protein-Protein Interactions (PPIs) is useful for many biological research works. However, despite the advancement of experimental techniques, the identification of PPI sites still remains as a challenging task. Using a statistical learning technique, we proposed a computational tool for predicting PPI interaction sites. As an alternative to similar approaches requiring structural information, the proposed method takes all of the input from protein sequences. In addition to typical sequence features, our method takes into consideration that interaction sites are not randomly distributed over the protein sequence. We characterized this positional preference using protein complexes with known structures, proposed a numerical index to estimate the propensity and then incorporated the index into a learning system. The resulting predictor, without using structural information, yields an area under the ROC curve (AUC) of 0.675, recall of 0.597, precision of 0.311 and accuracy of 0.583 on a ten-fold cross-validation experiment. This performance is comparable to the previous approach in which structural information was used. Upon introducing the B-factor data to our predictor, we demonstrated that the AUC can be further improved to 0.750. The tool is accessible at http://bsaltools.ym.edu.tw/predppis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133789 | PMC |
http://dx.doi.org/10.3390/ijms17111788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!