Insight into Understanding Dielectric Behavior of a Zn-MOF Using Variable-Temperature Crystal Structures, Electrical Conductance, and Solid-State C NMR Spectra.

Inorg Chem

State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.

Published: November 2016

A Zn-based metal-organic framework (MOF)/porous coordination polymer (PCP), (EMIM)[Zn(SIP)] (1) (SIP = 5-sulfoisophthalate, EMIM = 1-ethyl-3-methylimidazolium), was synthesized using the ionothermal reaction. The Zn ion adopts distorted square pyramid coordination geometry with five oxygen atoms from three carboxylates and one sulfo group. One of two carboxylates in SIP serves as a μ-bridge ligand to link two Zn ions and form the dinuclear SBU, and such SBUs are connected by SIP ligands to build the three-dimensional framework with rutile (rtl) topology. The cations from the ion-liquid fill the channels. This MOF/PCP shows two-step dielectric anomalies together with two-step dielectric relaxations; the variable-temperature single-crystal structure analyses disclosed the dielectric anomaly occurring at ca. 280 K is caused by an isostructural phase transition. Another dielectric anomaly is related to the dynamic disorder of the cations in the channels. Electric modulus, conductance, and variable-temperature solid-state C CP/MAS NMR spectra analyses revealed that two-step dielectric relaxations result from the dynamic motion of the cations as well as the direct-current conduction and electrode effect, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b01759DOI Listing

Publication Analysis

Top Keywords

two-step dielectric
12
nmr spectra
8
dielectric relaxations
8
dielectric anomaly
8
dielectric
6
insight understanding
4
understanding dielectric
4
dielectric behavior
4
behavior zn-mof
4
zn-mof variable-temperature
4

Similar Publications

Enhanced dielectric losses in α-MnO protonation modulation.

Chem Commun (Camb)

January 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

MnO octahedra without distortions in α-MnO have a low dipole content, which limits their dielectric loss capabilities. Herein, we develop protonated MnO with distorted MnO octahedra for increased dipole numbers a two-step hydrothermal method. In comparison with α-MnO, this protonated MnO provides greatly improved dipole polarization loss capabilities, resulting in a reflection loss value of -19.

View Article and Find Full Text PDF

DFT Investigation of the Stereoselectivity of the Lewis-Acid-Catalyzed Diels-Alder Reaction between 2,5-Dimethylfuran and Acrolein.

ACS Omega

January 2025

Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium.

Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO.

View Article and Find Full Text PDF

Excellent Energy Storage and Charge-Discharge Performance in (PbCa)(ZrSn)O Antiferroelectric Ceramics.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, School of Electromechanical Engineering and School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China.

Lead-based antiferroelectric (AFE) ceramics have the advantages of high power density, fast charge and discharge speed, and the electric-field-induced AFE-FE phase transition, making them one of the potential dielectric energy storage materials. However, the energy storage density still needs to be improved. In this work, (PbCa) (ZrSn)O (PCZS, = 0.

View Article and Find Full Text PDF

This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components.

View Article and Find Full Text PDF

Ferroelectric properties of HfZrO are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar-axis-oriented HfZrO layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)-oriented HfZrO thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state-of-the-art ferroelectric polarization up to 78.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!